Open Access
Cloning and sequencing of the genes from Salmonella typhimurium encoding a new bacterial ribonucleotide reductase
Author(s) -
Albert Jordan,
Isidre Gibert,
Jordi Barbé
Publication year - 1994
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.176.11.3420-3427.1994
Subject(s) - operon , biology , escherichia coli , plasmid , ribonucleotide reductase , open reading frame , gene , ribonucleotide , complementation , mutant , genetics , biochemistry , peptide sequence , nucleotide , protein subunit
A plasmid library of Salmonella typhimurium was used to complement a temperature-sensitive nrdA mutant of Escherichia coli. Complementation was obtained with two different classes of plasmids, one carrying the E. coli nrdAB-like genes and the second containing an operon encoding a new bacterial ribonucleotide reductase. Plasmids harboring these new reductase genes also enable obligately anaerobic nrdB::Mud1 E. coli mutants to grow in the presence of oxygen. This operon consists of two open reading frames, which have been designated nrdE (2,145 bp) and nrdF (969 bp). The deduced amino acid sequences of the nrdE and nrdF products include the catalytically important residues conserved in ribonucleotide reductase enzymes of class I and show 25 and 28% overall identity with the R1 and R2 protein, respectively, of the aerobic ribonucleoside diphosphate reductase of E. coli. The 3' end of the sequenced 4.9-kb fragment corresponds to the upstream region of the previously published proU operon of both S. typhimurium and E. coli, indicating that the nrdEF genes are at 57 min on the chromosomal maps of these two bacterial species. Analysis of the nrdEF and proU sequences demonstrates that transcription of the nrdEF genes is in the clockwise direction on the S. typhimurium and E. coli maps.