z-logo
open-access-imgOpen Access
Cloning and nucleotide sequence of the gene encoding the positive regulator (DmpR) of the phenol catabolic pathway encoded by pVI150 and identification of DmpR as a member of the NtrC family of transcriptional activators
Author(s) -
Victoria Shingler,
Magdalena Bartilson,
T. D. E. Moore
Publication year - 1993
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.175.6.1596-1604.1993
Subject(s) - operon , biology , genetics , promoter , gene , nucleic acid sequence , sigma factor , rpon , transposable element , complementation , rna polymerase , consensus sequence , regulator gene , microbiology and biotechnology , peptide sequence , mutant , regulation of gene expression , rna , gene expression
The catabolic plasmid pVI150 of Pseudomonas sp. strain CF600 encodes all the genetic information required for the regulated metabolism of phenol and some of its methyl-substituted derivatives. The structural dmp genes of the pathway are clustered in a single operon that lies just downstream of a -24 TGGC, -12 TTGC nif/ntr-like promoter sequence. Promoters of this class are recognized by a minor form of RNA polymerase utilizing sigma 54 (NtrA, RpoN). Primer extension analysis demonstrated that the dmp operon transcript initiates downstream of the -24, -12 promoter. Transposon insertion mutants, specifically defective in the regulation of the dmp operon, were isolated, and complementation of a phenol-utilization regulatory mutant was used to identify the regulatory locus, dmpR. The 67-kDa dmpR gene product alone was shown to be sufficient for activation of transcription from the dmp operon promoter. Nucleotide sequence determination revealed that DmpR belongs to the NtrC family of transcriptional activators that regulate transcription from -24, -12 promoters. The deduced amino acid sequence of DmpR has high homology (40 to 67% identity) with the central and carboxy-terminal regions of these activators, which are believed to be involved in the interaction with the sigma 54 RNA polymerase and in DNA binding, respectively. The amino-terminal region of DmpR was found to share 64% identity with the amino-terminal region of XylR, which is also a member of this family of activators. This region has been implicated in effector recognition of aromatic compounds that is required for the regulatory activity of XylR.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here