z-logo
open-access-imgOpen Access
Broad-specificity endoribonucleases and mRNA degradation in Escherichia coli
Author(s) -
Sunil K. Srivastava,
Vincent J. Cannistraro,
David Kennell
Publication year - 1992
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.174.1.56-62.1992
Subject(s) - rnase p , endoribonuclease , biology , molecular mass , biochemistry , escherichia coli , microbiology and biotechnology , rnase h , rnase ph , rna , enzyme , gene
Crude extracts from Escherichia coli were screened for any broad-specificity endoribonuclease after the cell proteins were fractionated by size. In a mutant lacking the gene for RNase I (molecular mass, 27,156 Da), the only such activities were also in the size range of 23 to 28 kDa. Fractionation by chromatography on a strong cation-exchange resin revealed only two activities. One of them eluted at a salt concentration expected for RNase M and had the specificity of RNase M. It preferred pyrimidine-adenosine bonds, could not degrade purine homopolymers, and had a molecular mass of approximately 27 kDa (V. J. Cannistraro and D. Kennell, Eur. J. Biochem. 181:363-370, 1989). A second fraction, eluting at a higher salt concentration, was active against any phosphodiester bond but was about 100 times less active than are RNase I and RNase I* (a form of RNase I) in the wild-type cell. On the basis of sizing-gel chromatography, this enzyme had a molecular mass of approximately 24 kDa. We call it RNase R (for residual). RNase R is not an abnormal product of the mutant rna gene; a cell carrying many copies of that gene on a plasmid did not synthesize more RNase R. Our search for broad-specificity endoribonucleases was prompted by the expectation that the primary activities for mRNA degradation are expressed by a relatively small number of broad-specificity RNases. If correct, the results suggest that the endoribonucleases for this major metabolic activity reside in the 24- to 28-kDa size range. Endoribonucleases with much greater specificity must have as primary functions the processing of specific RNA molecules at a very limited number of sites as steps in their biosynthesis. In exceptional cases, these endoribonucleases inactivate a specific message that has such a site, and they can also effect total mRNA metabolism indirectly by a global disturbance of the cell physiology. It is suggested that a distinction be made between these processing and degradative activities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here