z-logo
open-access-imgOpen Access
Purification and some properties of 2-halobenzoate 1,2-dioxygenase, a two-component enzyme system from Pseudomonas cepacia 2CBS
Author(s) -
Susanne Fetzner,
Rudolf Müller,
Franz Lingens
Publication year - 1992
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.174.1.279-290.1992
Subject(s) - isoelectric point , flavoprotein , electron acceptor , dioxygenase , flavin adenine dinucleotide , flavin group , dithionite , ferredoxin , catechol , enzyme , sulfide , biochemistry , stereochemistry , biology , chemistry , cofactor , organic chemistry
The two components of the inducible 2-halobenzoate 1,2-dioxygenase from Pseudomonas cepacia 2CBS were purified to homogeneity. Yellow component B is a monomer (Mr, 37,500) with NADH-acceptor reductase activity. Ferricyanide, 2,6-dichlorophenol indophenol, and cytochrome c acted as electron acceptors. Component B was identified as an iron-sulfur flavoprotein containing 0.8 mol of flavin adenine dinucleotide, 1.7 mol of iron, and 1.7 mol of acid-labile sulfide per mol of enzyme. The isoelectric point was estimated to be pH 4.2. Component B was reduced by the addition of NADH. Red-brown component A (Mr, 200,000 to 220,000) is an iron-sulfur protein containing 5.8 mol of iron and 6.0 mol of acid-labile sulfide. The isoelectric point was within the range of pH 4.5 to 5.3. Component A could be reduced by dithionite or by NADH plus catalytic amounts of component B. Component A consisted of nonidentical subunits alpha (Mr, 52,000) and beta (Mr, 20,000). It contained approximately equimolar amounts of alpha and beta, and cross-linking studies suggested an alpha 3 beta 3 subunit structure of component A. The NADH- and Fe(2+)-dependent enzyme system was named 2-halobenzoate 1,2-dioxygenase, because it catalyzes the conversion of 2-fluoro-, 2-bromo-, 2-chloro-, and 2-iodobenzoate to catechol. 2-Halobenzoate 1,2-dioxygenase exhibited a very broad substrate specificity, but benzoate analogs with electron-withdrawing substituents at the ortho position were transformed preferentially.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here