z-logo
open-access-imgOpen Access
Lrp, a leucine-responsive protein, regulates branched-chain amino acid transport genes in Escherichia coli
Author(s) -
Steven Haney,
Jill Platko,
Dale L. Oxender,
Joseph M. Calvo
Publication year - 1992
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.174.1.108-115.1992
Subject(s) - operon , biology , regulon , escherichia coli , leucine , regulator gene , lac operon , gene cluster , gene , biochemistry , tn10 , microbiology and biotechnology , regulation of gene expression , membrane transport protein , isoleucine , permease , repressor , gene expression , amino acid , transporter , enterobacteriaceae
We investigated the relationship between two regulatory genes, livR and lrp, that map near min 20 on the Escherichia coli chromosome. livR was identified earlier as a regulatory gene affecting high-affinity transport of branched-chain amino acids through the LIV-I and LS transport systems, encoded by the livJ and livKHMGF operons. lrp was characterized more recently as a regulatory gene of a regulon that includes operons involved in isoleucine-valine biosynthesis, oligopeptide transport, and serine and threonine catabolism. The expression of each of these livR- and lrp-regulated operons is altered in cells when leucine is added to their growth medium. The following results demonstrate that livR and lrp are the same gene. The lrp gene from a livR1-containing strain was cloned and shown to contain two single-base-pair substitutions in comparison with the wild-type strain. Mutations in livR affected the regulation of ilvIH, an operon known to be controlled by lrp, and mutations in lrp affected the regulation of the LIV-I and LS transport systems. Lrp from a wild-type strain bound specifically to several sites upstream of the ilvIH operon, whereas binding by Lrp from a livR1-containing strain was barely detectable. In a strain containing a Tn10 insertion in lrp, high-affinity leucine transport occurred at a high, constitutive level, as did expression from the livJ and livK promoters as measured by lacZ reporter gene expression. Taken together, these results suggest that Lrp acts directly or indirectly to repress livJ and livK expression and that leucine is required for this repression. This pattern of regulation is unusual for operons that are controlled by Lrp.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here