z-logo
open-access-imgOpen Access
O2-dependent methionine auxotrophy in Cu,Zn superoxide dismutase-deficient mutants of Saccharomyces cerevisiae
Author(s) -
E C Chang,
Daniel J. Kosman
Publication year - 1990
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.172.4.1840-1845.1990
Subject(s) - biochemistry , auxotrophy , biology , mutant , superoxide dismutase , methionine , cysteine , saccharomyces cerevisiae , sulfur metabolism , enzyme , yeast , amino acid , gene
Mutant strains of the yeast Saccharomyces cerevisiae which lack functional Cu,Zn superoxide dismutase (SOD-1) do not grow aerobically unless supplemented with methionine. The molecular basis of this O2-dependent auxotrophy in one of the mutants, Dscd1-1C, has been investigated. Sulfate supported anaerobic but not aerobic mutant growth. On the other hand, cysteine and homocysteine supported aerobic growth while serine, O-acetylserine, and homoserine did not, indicating that the interconversion of cysteine and methionine (and homocysteine) was not impaired. Thiosulfate (S2O3(2-] and sulfide (S2-) also supported aerobic growth; the activities of thiosulfate reductase and sulfhydrylase in the aerobic mutant strain were at wild-type levels. Although the levels of SO4(2-) and adenosine-5'-sulfate (the first intermediate in the SO4(2-) assimilation pathway) were elevated in the aerobically incubated mutant strain, this condition could be attributed to a decrease in protein synthesis caused by the de facto sulfur starvation and not to a block in the pathway. Therefore, the activation of SO4(2-) (to form 3'-phosphoadenosine-5'-phosphosulfate) appeared to be O2 tolerant. Sulfite reductase activity and substrate concentrations [( NADPH] and [SO3(2-)]) were not significantly different in aerobically grown mutant cultures and anaerobic cultures, indicating that SOD-1- mutant strains could reductively assimilate sulfur oxides. However, the mutant strain exhibited an O2-dependent sensitivity to SO3(2-) concentrations of less than 50 microM not exhibited by any SOD-1+ strain or by SOD-1- strains supplemented with a cytosolic O2(-)-scavenging activity. This result suggests that the aerobic reductive assimilation of SO4(2-) at the level of SO3(2-) may generate a cytotoxic compound(s) which persists in SOD-(1-) yeast strains.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here