z-logo
open-access-imgOpen Access
Sigma H-directed transcription of citG in Bacillus subtilis
Author(s) -
Kathleen M. Tatti,
H L Carter,
Anne Moir,
Charles P. Moran
Publication year - 1989
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.171.11.5928-5932.1989
Subject(s) - sigma factor , biology , promoter , rna polymerase , transcription (linguistics) , bacillus subtilis , microbiology and biotechnology , sigma , gene , genetics , primer extension , rna polymerase ii , operon , gene expression , specificity factor , rna , escherichia coli , linguistics , philosophy , physics , quantum mechanics , bacteria
The RNA polymerase sigma factor sigma H is essential for the onset of endospore formation in Bacillus subtilis. sigma H also is required for several additional stationary-phase-specific responses, including the normal expression of several genes that are required for the development of competence for DNA uptake. It is necessary to identify the genes that are transcribed by sigma H RNA polymerase (E sigma H) in order to understand the role of this sigma factor during the transition from exponential growth to stationary phase. Feavers et al. (Mol. Gen. Genet. 211:465-471, 1988) proposed that citG, the structural gene for fumarase, is transcribed from two promoters, one of which (citGp2 [P2]) may be used by E sigma H. It is likely that the citGp2 promoter is used by E sigma H because we found that this promoter was used accurately in vitro by E sigma H and directed expression of xylE in vivo. This xylE expression was dependent on spo0H, the structural gene for sigma H, and was independent of the citGp1 promoter. Comparison of the nucleotide sequences of several sigma H-dependent promoters showed that these sequences were similar at two regions approximately 10 and 35 base pairs upstream from the start points of transcription. These sequences may signal recognition of these promoters by E sigma H. Primer extension analyses were used to examine transcription from three sigma H-dependent promoters during growth and sporulation. The citGp2 promoter appeared to be active during the middle and late stages of exponential growth, whereas activation of the spoIIA promoter was delayed until after the end of exponential growth. Evidently, promoters used by E sigma H can display different temporal patterns of expression.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here