
Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine
Author(s) -
Debra L. Weinstein,
Matthew P. Jackson,
James E. Samuel,
Randall K. Holmes,
A D O'Brien
Publication year - 1988
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.170.9.4223-4230.1988
Subject(s) - shiga toxin , shiga like toxin , biology , shigella dysenteriae , escherichia coli , toxin , microbiology and biotechnology , vero cell , gene , virology , genetics , virus
A Shiga-like toxin type II variant (SLT-IIv) is produced by strains of Escherichia coli responsible for edema disease of swine and is antigenically related to Shiga-like toxin type II (SLT-II) of enterohemorrhagic E. coli. However, SLT-IIv is only active against Vero cells, whereas SLT-II is active against both Vero and HeLa cells. The structural genes for SLT-IIv were cloned from E. coli S1191, and the nucleotide sequence was determined and compared with those of other members of the Shiga toxin family. The A subunit genes for SLT-IIv and SLT-II were highly homologous (94%), whereas the B subunit genes were less homologous (79%). The SLT-IIv genes were more distantly related (55 to 60% overall homology) to the genes for Shiga toxin of Shigella dysenteriae type 1 and the nearly identical Shiga-like toxin type I (SLT-I) of enterohemorrhagic E. coli. (These toxins are referred to together as Shiga toxin/SLT-I.) The A subunit of SLT-IIv, like those of other members of this toxin family, had regions of homology with the plant lectin ricin. SLT-IIv did not bind to galactose-alpha 1-4-galactose conjugated to bovine serum albumin, which is an analog of the eucaryotic cell receptor for Shiga toxin/SLT-I and SLT-II. These findings support the hypothesis that SLT-IIv binds to a different cellular receptor than do other members of the Shiga toxin family but has a similar mode of intracellular action. The organization of the SLT-IIv operon was similar to that of other members of the Shiga toxin family. Iron did not suppress SLT-IIv or SLT-II production, in contrast with its effect on Shiga toxin/SLT-I. Therefore, the regulation of synthesis of SLT-IIv and SLT-II differs from that of Shiga toxin/SLT-I.