
Properties of a Tn5 insertion mutant defective in the structural gene (fruA) of the fructose-specific phosphotransferase system of Rhodobacter capsulatus and cloning of the fru regulon
Author(s) -
Gregory A. Daniels,
Gerhart Drews,
Milton H. Saier
Publication year - 1988
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.170.4.1698-1703.1988
Subject(s) - biochemistry , biology , pep group translocation , rhodobacter , fructose , mutant , fructose 1,6 bisphosphatase , fructokinase , enzyme , phosphoenolpyruvate carboxykinase , gene
In photosynthetic bacteria such as members of the genera Rhodospirillum, Rhodopseudomonas, and Rhodobacter a single sugar, fructose, is transported by the phosphotransferase system-catalyzed group translocation mechanism. Previous studies indicated that syntheses of the three fructose catabolic enzymes, the integral membrane enzyme II, the peripheral membrane enzyme I, and the soluble fructose-1-phosphate kinase, are coordinately induced. To characterize the genetic apparatus encoding these enzymes, a Tn5 insertion mutation specifically resulting in a fructose-negative, glucose-positive phenotype was isolated in Rhodobacter capsulatus. The mutant was totally lacking in fructose fermentation, fructose uptake in vivo, phosphoenolpyruvate-dependent fructose phosphorylation in vitro, and fructose 1-phosphate-dependent fructose transphosphorylation in vitro. Extraction of the membrane fraction of wild-type cells with butanol and urea resulted in the preparation of active enzyme II free of contaminating enzyme I activity. This preparation was used to show that the activity of enzyme I was entirely membrane associated in the parent but largely soluble in the mutant, suggesting the presence of an enzyme I-enzyme II complex in the membranes of wild-type cells. The uninduced mutant exhibited measurable activities of both enzyme I and fructose-1-phosphate kinase, which were increased threefold when it was grown in the presence of fructose. Both activities were about 100-fold inducible in the parental strain. Although the Tn5 insertion mutation was polar on enzyme I expression, fructose-1-phosphate kinase activity was enhanced, relative to the parental strain. ATP-dependent fructokinase activity was low, but twofold inducible and comparable in the two strains. A second fru::Tn5 mutant and a chemically induced mutant selected on the basis of xylitol resistance showed pleiotropic loss of enzyme I, enzyme II, and fructose-1-phosphate kinase. These mutants were used to clone the fru regulon by complementing the negative phenotype with a wild-type cosmid bank.