z-logo
open-access-imgOpen Access
beta-Alanine auxotrophy associated with dfp, a locus affecting DNA synthesis in Escherichia coli
Author(s) -
Eric D. Spitzer,
H E Jimenez-Billini,
Bernard Weiss
Publication year - 1988
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.170.2.872-876.1988
Subject(s) - auxotrophy , complementation , biology , escherichia coli , mutant , biochemistry , plasmid , microbiology and biotechnology , mutagenesis , mutation , gene , genetics
Strains containing the conditional-lethal dfp-707 mutation, which have a defect in DNA synthesis at 42 degrees C, were found to require either pantothenate or its precursor, beta-alanine, for growth at 30 degrees C. The auxotrophy and conditional lethality were corevertible. Through localized mutagenesis of the dfp-pyrE region of Escherichia coli, another mutation, dfp-1, was obtained. It conferred the auxotrophy but not the conditional lethality of dfp-707. Complementation analysis, performed with a set of plasmid-borne deletion and insertion mutations, revealed a correspondence between the complementation of each mutant phenotype and the production of the dfp gene product, previously identified as a 45-kilodalton flavoprotein. The dfp mutants had a normal level of aspartate-1-decarboxylase, which is the only enzyme known to produce beta-alanine in E. coli and which is specified by the distant panD gene. A prototrophic pseudorevertant of a dfp-1 strain was found to have retained the dfp mutation, to be genetically unstable, and to have an elevated level of aspartate-1-decarboxylase, suggesting that it had acquired a duplication of panD. It is not known what steps in pantothenate or DNA metabolism are affected by the mutant dfp product or how its flavin moiety may be involved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here