z-logo
open-access-imgOpen Access
Nucleotide sequence of the type A staphylococcal enterotoxin gene
Author(s) -
M J Betley,
John J. Mekalanos
Publication year - 1988
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.170.1.34-41.1988
Subject(s) - biology , enterotoxin , nucleic acid sequence , gene , peptide sequence , dna , homology (biology) , microbiology and biotechnology , base pair , exotoxin , genetics , toxin , escherichia coli
We determined the nucleotide sequence of the gene encoding staphylococcal enterotoxin A (entA). The gene, composed of 771 base pairs, encodes an enterotoxin A precursor of 257 amino acid residues. A 24-residue N-terminal hydrophobic leader sequence is apparently processed, yielding the mature form of staphylococcal enterotoxin A (Mr, 27,100). Mature enterotoxin A has 82, 72, 74, and 34 amino acid residues in common with staphylococcal enterotoxins B and C1, type A streptococcal exotoxin, and toxic shock syndrome toxin 1, respectively. This level of homology was determined to be significant based on the results of computer analysis and biological considerations. DNA sequence homology between the entA gene and genes encoding other types of staphylococcal enterotoxins was examined by DNA-DNA hybridization analysis with probes derived from the entA gene. A 624-base-pair DNA probe that represented an internal fragment of the entA gene hybridized well to DNA isolated from EntE+ strains and some EntA+ strains. In contrast, a 17-base oligonucleotide probe that encoded a peptide conserved among staphylococcal enterotoxins A, B, and C1 hybridized well to DNA isolated from EntA+, EntB+, EntC1+, and EntD+ strains. These hybridization results indicate that considerable sequence divergence has occurred within this family of exotoxins.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here