Open Access
Molecular cloning and analysis of genes for production of K5, K7, K12, and K92 capsular polysaccharides in Escherichia coli
Author(s) -
Ian S. Roberts,
Roger Mountford,
Nicky J. High,
D. BitterSuermann,
Klaus Jann,
Kenneth N. Timmis,
Graham J. Boulnois
Publication year - 1986
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.168.3.1228-1233.1986
Subject(s) - cosmid , biology , plasmid , escherichia coli , microbiology and biotechnology , southern blot , gene , restriction map , restriction enzyme , molecular cloning , dna , antigen , homology (biology) , genetics , complementary dna
With a DNA fragment from within the region encoding the transport functions for K1 production as a hybridization probe in Southern blot experiments, homologous DNA sequences were detected in the DNA from Escherichia coli strains producing K5, K7, K92, and K100 capsular polysaccharides. No homology with the laboratory strain LE392 was detected. The same DNA probe was used to prescreen cosmid libraries in LE392 by colony hybridization, as a rapid method to isolate clones encoding the genes for K5, K7, K12, and K92 antigen production. Clones carrying sequences homologous to the probe that also produced capsular material were identified by using polyclonal and monoclonal antibodies raised against the K antigen in question and K antigen-specific phages. By restriction enzyme mapping of the appropriate cosmid clones it was possible to align the genes for the production of different K antigens in terms of common restriction endonuclease cleavage sites. A DNA fragment encoding the postulated transport functions for K7 antigen production could complement deletion mutations in the transport functions for K1 antigen production. Thus the transport to the cell surface of chemically distinct polysaccharides may be by a common process. Analysis in E. coli of the proteins produced by plasmids carrying the likely transport functions for K1, K5, and K7 antigen production revealed that each region coded for a similar polypeptide.