
Cloning and characterization of the polC region of Bacillus subtilis
Author(s) -
Russell W. Ott,
Marjorie H. Barnes,
Neal C. Brown,
A. T. Ganesan
Publication year - 1986
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.165.3.951-957.1986
Subject(s) - biology , microbiology and biotechnology , bacillus subtilis , recombinant dna , plasmid , dna polymerase , escherichia coli , molecular cloning , polymerase , dna , gene , cloning (programming) , genetics , gene expression , bacteria , computer science , programming language
The polC gene of Bacillus subtilis is defined by five temperature-sensitive mutations and the 6-(p-hydroxyphenylazo)-uracil (HPUra) resistance mutation azp-12. Biochemical evidence suggests that polC codes for the 160-kilodalton DNA polymerase III. A recombinant plasmid, p154t, was isolated and found to contain the azp-12 marker and one end of the polC gene (N. C. Brown and M. H. Barnes, J. Cell. Biochem. 78 [Suppl.]: 116, 1983). The azp-12 marker was localized to a 1-kilobase DNA segment which was used as a probe to isolate recombinant lambda phages containing polC region sequences. A complete polC gene was constructed by in vitro ligation of DNA segments derived from two of the recombinant phages. The resulting plasmid, pRO10, directed the synthesis of four proteins of 160, 76, 39, and 32 kilodaltons in Escherichia coli maxicells. Recombination-deficient (recE) B. subtilis PSL1 containing pRO10 produced an HPUra-resistant polymerase III activity which was lost when the strain was cured of pRO10. In vivo, the HPUra resistance of the plasmid-encoded polymerase III appeared to be recessive to the resident HPUra-sensitive polymerase III enzyme.