z-logo
open-access-imgOpen Access
Single-strand breakage of DNA in UV-irradiated uvrA, uvrB, and uvrC mutants of Escherichia coli
Author(s) -
M.S. Tang,
Lisa Ross
Publication year - 1985
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.161.3.933-938.1985
Subject(s) - single strand , biology , dna , irradiation , phosphodiester bond , microbiology and biotechnology , dna damage , mutant , escherichia coli , pyrimidine dimer , dna repair , biophysics , biochemistry , gene , rna , physics , nuclear physics
We transduced the uvrA6, uvrB5, uvrC34, and uvrC56 markers from the original mutagenized strains into an HF4714 background. Although in the original mutagenized strains uvrA6 cells are more UV sensitive than uvrB5 and uvrC34 cells, in the new background no significant difference in UV sensitivity is observed among uvrA6, uvrB5, and uvrC34 cells. No DNA single-strand breaks are detected in UV-irradiated uvrA6 or uvrB5 cells, whereas in contrast a significant number of single-strand breaks are detected in both UV-irradiated uvrC34 and uvrC56 cells. The number of single-strand breaks in these cells reaches a plateau at 20-J/m2 irradiation. Since these single-strand breaks can be detected by both alkaline sucrose and neutral formamide-sucrose gradient sedimentation, we concluded that the single-strand breaks observed in UV-irradiated uvrC cells are due to phosphodiester bond interruptions in DNA and are not due to apurinic/apyrimidinic sites.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom