Investigation of the Essentiality of Glutamate Racemase in Mycobacterium smegmatis
Author(s) -
Yang Li,
Roman Mortuza,
Daniel L. Milligan,
Sieu L. Tran,
Ulrich Strych,
Gregory M. Cook,
Kurt L. Krause
Publication year - 2014
Publication title -
journal of bacteriology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.652
H-Index - 246
eISSN - 1067-8832
pISSN - 0021-9193
DOI - 10.1128/jb.02090-14
Subject(s) - mycobacterium smegmatis , biology , peptidoglycan , mycobacterium tuberculosis , microbiology and biotechnology , streptococcus pneumoniae , glutamate receptor , cell wall , mycobacterium , bacteria , biochemistry , genetics , tuberculosis , antibiotics , medicine , receptor , pathology
The mycobacterial cell wall frequently has been used as a target for drug development, and d-glutamate, synthesized by glutamate racemase (MurI), is an important component of peptidoglycan. While the essentiality of the murI gene has been shown in several bacterial species, including Escherichia coli, Bacillus anthracis, and Streptococcus pneumoniae, studies in mycobacteria have not yet provided definitive results. This study aimed to determine whether murI is indeed essential and can serve as a possible target for structure-aided drug design. We have achieved this goal by creating a ΔmurI strain of Mycobacterium smegmatis, a close relative of Mycobacterium tuberculosis. The deletion of the murI gene in M. smegmatis could be achieved only in minimal medium supplemented with D-glutamate, demonstrating that MurI is essential for growth and that glutamate racemase is the only source of D-glutamate for peptidoglycan synthesis in M. smegmatis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom