z-logo
open-access-imgOpen Access
Translocation and Surface Expression of Lipidated Serogroup B Capsular Polysaccharide in Neisseria meningitidis
Author(s) -
Yih-Ling Tzeng,
Anup Datta,
Cristy A. Strole,
Michael A. Lobritz,
Russell W. Carlson,
David S. Stephens
Publication year - 2005
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.73.3.1491-1505.2005
Subject(s) - bacterial capsule , microbiology and biotechnology , biology , bacterial outer membrane , operon , mutant , neisseria meningitidis , escherichia coli , neisseriaceae , gene , bacteria , virulence , biochemistry , antibiotics , genetics
The capsule of N. meningitidis serogroup B, (alpha2-->8)-linked polysialic acid and the capsules of other meningococcal serogroups and of other gram-negative bacterial pathogens are anchored in the outer membrane through a 1,2-diacylglycerol moiety. Previous work on the meningococcal cps complex in Escherichia coli K-12 indicated that deletion of genes designated lipA and lipB caused intracellular accumulation of hyperelongated capsule polymers lacking the phospholipid substitution. To better understand the role of lip and lipB in capsule expression in a meningococcal background, the location, sequence, and relationship to related bacterial capsule genes were defined and specific mutations in lipA and lipB were generated in the serogroup B meningococcal strain NMB. The lipA and lipB genes are located on the 3' end of the ctr operon and are most likely transcribed independently. Inactivation of lipA, lipB, and both resulted in the same total levels of capsular polymer production as in the parental controls; however, these mutants were as sensitive as an unencapsulated mutant to killing by normal human serum. Immunogold electron microscopy and flow cytometric analyses revealed intracellular inclusions of capsular polymers in lipA, lipB, and lipA lipB mutants. Capsular polymers purified from lipA, lipB, and lipA lipB mutants were lipidated. The phospholipid anchor was shown by gas chromatography-mass spectroscopy analysis to be a phosphodiester-linked 1,2-dipalmitoyl (C16:0) glycerol moiety and was identical in structure to that found on the wild-type meningococcal capsule polymers. Thus, lipA and lipB do not encode proteins responsible for diacylglycerophosphatidic acid substitution of the meningococcal capsule polymer; rather, they are required for proper translocation and surface expression of the lipidated polymer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here