
Bacterial Superantigen-Treated Intestinal Epithelial Cells Upregulate Heat Shock Proteins 25 and 72 and Are Resistant to Oxidant Cytotoxicity
Author(s) -
Mark W. Musch,
Elaine O. Petrof,
Kensuke Kojima,
Hao Ren,
Derek M. McKay,
Eugene B. Chang
Publication year - 2004
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.72.6.3187-3194.2004
Subject(s) - superantigen , biology , heat shock protein , p38 mitogen activated protein kinases , microbiology and biotechnology , enterotoxin , downregulation and upregulation , cytotoxicity , protein kinase a , kinase , immunology , in vitro , immune system , t cell , escherichia coli , biochemistry , gene
While the pathological events evoked by infection are commonly described, effective host responses to bacteria and their products should primarily be protective. Heat shock protein (Hsp) expression is upregulated by many stimuli and serves to maintain intracellular protein integrity. The ability of the prototypic superantigen, Staphylococcus aureus enterotoxin B (SEB) to induce Hsps was investigated with BALB/c mice and by in vitro addition to the murine small intestinal epithelial cell line MSIE. SEB-treated (5 or 100 microg intraperitoneally) mice revealed increased Hsp25 and Hsp72, but not Hsc73, in jejunal lymphocytes and epithelial cells. A similar Hsp response to SEB occurred in MSIE cells and was preceded by activation of the ERK1/2 and p38 mitogen-activated protein kinases but not the SAPK/JNK pathway; pharmacological inhibition of ERK1/2, but not p38, significantly reduced SEB-induced Hsps. Moreover, SEB-treated MSIE cells were protected against oxidant-induced cytotoxicity (measured by 51Cr release) and F-actin depolymerization. Thus, SEB exposure results in a rapid induction of the Hsp25 and Hsp72 in intestinal epithelial cells, both directly and through lymphocyte activation, and we suggest that this event is important in protecting the gut from damage by Staphylococcus infection or in the reparatory process and may be a generalized response to lumen-derived bacterial toxins.