
Members of the Merozoite Surface Protein 7 Family with Similar Expression Patterns Differ in Ability To Protect againstPlasmodium yoeliiMalaria
Author(s) -
Kerrianne Mello,
Thomas M. Daly,
Carole A. Long,
James M. Burns,
Lawrence W. Bergman
Publication year - 2004
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.72.2.1010-1018.2004
Subject(s) - plasmodium yoelii , merozoite surface protein , biology , plasmodium falciparum , immunoprecipitation , plasmodium (life cycle) , immune system , antibody , microbiology and biotechnology , parasite hosting , malaria , virology , immunology , malaria vaccine , parasitemia , world wide web , computer science
Previously, we described the isolation of the Plasmodium yoelii sequence-related molecules P. yoelii MSP-7 (merozoite surface protein 7) and P. yoelii MSRP-2 (MSP-7-related protein 2) by their ability to interact with the amino-terminal end of P. yoelii MSP-1 in a yeast two-hybrid system. One of these molecules was the homologue of Plasmodium falciparum MSP-7, which was biochemically isolated as part of the shed MSP-1 complex. In the present study, with antibodies directed against recombinant proteins, immunoprecipitation analyses of the rodent system demonstrated that both P. yoelii MSP-7 and P. yoelii MSRP-2 could be isolated from parasite lysates and from parasite culture supernatants. Immunofluorescence studies colocalized P. yoelii MSP-7 and P. yoelii MSRP-2 with the amino-terminal portion of MSP-1 and with each other on the surface of schizonts. Immunization with P. yoelii MSRP-2 but not P. yoelii MSP-7 protected mice against a lethal infection with P. yoelii strain 17XL. These results establish that both P. yoelii MSP-7 and P. yoelii MSRP-2 are expressed on the surface of merozoites and released from the parasite and that P. yoelii MSRP-2 may be the target of a protective immune response.