z-logo
open-access-imgOpen Access
MD-2, a Novel Accessory Molecule, Is Involved in Species-Specific Actions ofSalmonellaLipid A
Author(s) -
Masashi Muroi,
Takahiro Ohnishi,
Kenichi Tanamoto
Publication year - 2002
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.70.7.3546-3550.2002
Subject(s) - lipid a , salmonella , biology , enterobacteriaceae , cd14 , microbiology and biotechnology , escherichia coli , biochemistry , bacteria , gene , receptor , genetics
Salmonella lipid A is inactive in human macrophages despite being potently active in murine macrophages. We investigated the molecular basis for this species-specific action of Salmonella lipid A. When murine CD14 (mCD14), mTLR4, and mMD-2 were all expressed in human monocytic THP-1 cells, these cells were capable of responding to Salmonella lipid A. Expressing each of these proteins separately did not impart such responsiveness. Expression of mTLR4 plus mMD-2, but not mCD14 plus mTLR4 or mCD14 plus mMD-2, conferred this responsiveness. In THP-1 cells expressing mCD14, mTLR4, and mMD-2, replacing mCD14 with human CD14 had no effect on responsiveness to Salmonella lipid A or synthetic Salmonella-type lipid A (compound 516). When mTLR4 was replaced with human TLR4, the responses to these lipid A preparations were decreased to half, and the replacement of mMD-2 decreased responsiveness to one-third, although the responses to Escherichia coli lipid A or synthetic E. coli-type lipid A (compound 506) were not affected. These results indicate that both TLR4 and MD-2 participate in the species-specific action of Salmonella lipid A.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here