
Membrane Localization of the S1 Subunit of Pertussis Toxin in Bordetella pertussis and Implications for Pertussis Toxin Secretion
Author(s) -
Karen M. Farizo,
Stefanie Fiddner,
Anissa M. Cheung,
Drusilla L Burns
Publication year - 2002
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.70.3.1193-1201.2002
Subject(s) - bordetella pertussis , pertussis toxin , biology , protein subunit , secretion , toxin , escherichia coli , bacterial outer membrane , membrane protein , microbiology and biotechnology , g protein , biochemistry , membrane , bacteria , gene , genetics , receptor
Pertussis toxin is secreted from Bordetella pertussis with the assistance of the Ptl transport system, a member of the type IV family of macromolecular transporters. The S1 subunit and the B oligomer combine to form the holotoxin prior to export from the bacterial cell, although the site of assembly is not known. To better understand the pathway of pertussis toxin assembly and secretion, we examined the subcellular location of the S1 subunit, expressed with or without the B oligomer and the Ptl proteins. In wild-type B. pertussis, the majority of the S1 subunit that remained cell associated localized to the bacterial membranes. In mutants of B. pertussis that do not express pertussis toxin and/or the Ptl proteins, full-length S1, expressed from a plasmid, partitioned almost entirely to the bacterial membranes. Several lines of evidence strongly suggest that the S1 subunit localizes to the outer membrane of B. pertussis. First, we found that membrane-bound full-length S1 was almost completely insoluble in Triton X-100. Second, recombinant S1 previously has been shown to localize to the outer membrane of Escherichia coli (J. T. Barbieri, M. Pizza, G. Cortina, and R. Rappuoli, Infect. Immun. 58:999-1003, 1990). Third, the S1 subunit possesses a distinctive amino acid motif at its carboxy terminus, including a terminal phenylalanine, which is highly conserved among bacterial outer membrane proteins. By using site-directed mutagenesis, we determined that the terminal phenylalanine is critical for stable expression of the S1 subunit. Our findings provide evidence that prior to assembly with the B oligomer and independent of the Ptl proteins, the S1 subunit localizes to the outer membrane of B. pertussis. Thus, outer membrane-bound S1 may serve as a nucleation site for assembly with the B oligomer and for interactions with the Ptl transport system.