
Induction of Epithelial Cell Death Including Apoptosis by Enteropathogenic Escherichia coli Expressing Bundle-Forming Pili
Author(s) -
Maan Abul-Milh,
Ying Wu,
B. Lau,
Clifford A. Lingwood,
Debora Barnett Foster
Publication year - 2001
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.69.12.7356-7364.2001
Subject(s) - biology , enteropathogenic escherichia coli , pilus , microbiology and biotechnology , programmed cell death , virulence , plasmid , apoptosis , virulence factor , escherichia coli , bacterial adhesin , gene , genetics
Infection with enteropathogenic Escherichia coli (EPEC) is a major cause of severe infantile diarrhea, particularly in parts of the developing world. The bundle-forming pilus (BFP) of EPEC is an established virulence factor encoded on the EPEC adherence factor plasmid (EAF) and has been implicated in both localized adherence to host cells and bacterial autoaggregation. We investigated the role of BFP in the ability of EPEC binding to kill host epithelial cells. BFP-expressing strains killed all three cell lines tested, comprising HEp-2 (laryngeal), HeLa (cervical), and Caco-2 (colonic) cells. Analysis of phosphatidylserine expression, internucleosomal cleavage of host cell DNA, and morphological changes detected by electron microscopy indicated evidence of apoptosis. The extent of cell death was significantly greater for BFP-expressing strains, including E2348/69, a wild-type clinical isolate, as well as for a laboratory strain, HB101, transformed with a bfp-carrying plasmid. Strains which did not express BFP induced significantly less cell death, including a bfpA disruptional mutant of E2348/69, EAF plasmid-cured E2348/69, HB101, and HB101 complemented with the locus of enterocyte effacement pathogenicity island. These results indicate a direct correlation between BFP expression and induction of cell death, including apoptosis, an event which may involve the targeting of host cell membrane phosphatidylethanolamine.