
Impaired Pulmonary NF-κB Activation in Response to Lipopolysaccharide in NADPH Oxidase-Deficient Mice
Author(s) -
M. Audrey Koay,
John W. Christman,
Brahm H. Segal,
Annapurna Venkatakrishnan,
Tom Blackwell,
Steven M. Holland,
Timothy S. Blackwell
Publication year - 2001
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.69.10.5991-5996.2001
Subject(s) - lipopolysaccharide , nadph oxidase , inflammation , biology , nfkb1 , knockout mouse , reactive oxygen species , p50 , signal transduction , immunology , microbiology and biotechnology , transcription factor , biochemistry , receptor , gene
Reactive oxygen species (ROS) are thought to be involved in intracellular signaling, including activation of the transcription factor NF-kappaB. We investigated the role of NADPH oxidase in the NF-kappaB activation pathway by utilizing knockout mice (p47phox-/-) lacking the p47phox component of NADPH oxidase. Wild-type (WT) controls and p47phox-/- mice were treated with intraperitoneal (i.p.) Escherichia coli lipopolysaccharide (LPS) (5 or 20 microg/g of body weight). LPS-induced NF-kappaB binding activity and accumulation of RelA in nuclear protein extracts of lung tissue were markedly increased in WT compared to p47phox-/- mice 90 min after treatment with 20 but not 5 microg of i.p. LPS per g. In another model of lung inflammation, RelA nuclear translocation was reduced in p47phox-/- mice compared to WT mice following treatment with aerosolized LPS. In contrast to NF-kappaB activation in p47phox-/- mice, LPS-induced production of macrophage inflammatory protein 2 in the lungs and neutrophilic lung inflammation were not diminished in these mice compared to WT mice. We conclude that LPS-induced NF-kappaB activation is deficient in the lungs of p47phox-/- mice compared to WT mice, but this abnormality does not result in overt alteration in the acute inflammatory response.