
Transmission Electron Microscopic Demonstration of Phagocytosis and Intracellular Processing of Segmented Filamentous Bacteria by Intestinal Epithelial Cells of the Chick Ileum
Author(s) -
Koh-en Yamauchi,
J. Snel
Publication year - 2000
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.68.11.6496-6504.2000
Subject(s) - segmented filamentous bacteria , biology , phagocytosis , extracellular , ileum , microbiology and biotechnology , bacteria , immune system , intracellular , immunology , biochemistry , waste management , sewage treatment , genetics , activated sludge , engineering
Segmented filamentous bacteria (SFB) are autochthonous bacteria colonizing the ileum of many young animals by attaching to intestinal epithelial cells. These nonpathogenic bacteria strongly stimulate the mucosal immune system and induce intestinal epithelial cells to express major histocompatibility complex class II molecules. We tried to discover whether SFB are phagocytized and intracellularly processed by the host cells, which is indicative of antigen processing. The middle part of the ileum was extracted from 10- and 20-day-old broiler chicks (Gallus gallus domesticus ). Samples were processed and examined by scanning and transmission electron microscopy (SEM and TEM, respectively). In SEM, no, few, medium, and dense SFB colonization levels were classified. In TEM of cells from animals with medium or dense SFB colonization levels, we could observe extracellular particles ranging from those only indenting the cell membrane to particles found in the cytoplasmatic area beyond the terminal web. These particles had a structural similarity with SFB that were floating freely in the intestinal lumen. Furthermore, we observed unlacing of the membrane and septum surrounding the extracellular particles and their incorporation into host cytoplasmatic components, which strongly suggests that these particles are phagocytized and intracellularly processed SFB. This conclusion is supported by TEM analysis of samples with no or few SFB, in which we failed to find these characteristic morphologies. The phagocytosis process described here could be an important trigger for the stimulating effect of SFB on the mucosal immune system.