z-logo
open-access-imgOpen Access
Substrains of 129 Mice Are Resistant to Yersinia pestis KIM5: Implications for Interleukin-10-Deficient Mice
Author(s) -
Joshua K. Turner,
John Xu,
Richard I. Tapping
Publication year - 2009
Publication title -
infection and immunity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.508
H-Index - 220
eISSN - 1070-6313
pISSN - 0019-9567
DOI - 10.1128/iai.01057-08
Subject(s) - yersinia pestis , biology , microbiology and biotechnology , virology , interleukin , interleukin 2 , virulence , immunology , yersinia , bacteria , immune system , cytokine , genetics , gene
Interleukin-10 (IL-10)-deficient mice are resistant to several pathogens, including Yersinia pestis. Surprisingly, we observed that heterozygous IL-10(+/-) mice also survive high-dose intravenous infection with Y. pestis KIM5 (Pgm(-)). Analysis of commercial IL-10(-/-) mice revealed that at least 30 cM of genomic DNA from the original 129 strain remains, including a functional Slc11a1 (Nramp1) gene. Interestingly, two substrains of 129 mice were resistant to high-dose Y. pestis KIM5. Resistance does not appear to be recessive, as F(1) mice (C57BL/6J x 129) also survived a high-dose challenge. A QTL-based genetic scan of chromosome 1 with 35 infected F(1) backcrossed mice revealed that resistance to KIM5 maps to a region near IL-10. Two novel IL-10(+/+) mouse strains which each possess most of the original 30-cM stretch of 129 DNA maintained resistance to high-dose infection with Y. pestis KIM5 even in a heterozygous state. Conversely, a novel IL-10(-/-) mouse strain in which most of the 129 DNA has been crossed out exhibited intermediate resistance to KIM5, while the corresponding IL-10(+/-) strain was completely susceptible. Taken together, these results demonstrate that 129-derived genomic DNA near IL-10 confers resistance to Yersinia pestis KIM5 and contributes to the observed resistance of IL-10(-/-) mice.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here