
Role of Mitogen-Activated Protein Kinases in Peptidoglycan-Induced Expression of Inducible Nitric Oxide Synthase and Nitric Oxide in Mouse Peritoneal Macrophages: Extracellular Signal-Related Kinase, a Negative Regulator
Author(s) -
Kunal H. Bhatt,
Ajit Sodhi,
Rituparna Chakraborty
Publication year - 2011
Publication title -
clinical and vaccine immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.649
H-Index - 77
eISSN - 1556-6811
pISSN - 1556-679X
DOI - 10.1128/cvi.00541-10
Subject(s) - mapk/erk pathway , kinase , nitric oxide synthase , p38 mitogen activated protein kinases , microbiology and biotechnology , nitric oxide , protein kinase a , small interfering rna , mitogen activated protein kinase , signal transduction , extracellular , biology , chemistry , biochemistry , transfection , endocrinology , gene
The expression of inducible nitric oxide synthase (iNOS) and the production of nitric oxide (NO) are important host defense mechanisms against pathogens in mononuclear phagocytes. The objectives of this study were to examine the roles of mitogen-activated protein kinases (MAPKs) and transcription factors (nuclear factor-κB [NF-κB] and activating protein 1 [AP-1]) in peptidoglycan (PGN)-induced iNOS expression and NO production in macrophages. PGN is a cell wall component of Gram-positive bacteria that stimulates inflammatory responses bothex vivo andin vivo . PGN stimulates the activation of all three classes of MAPKs, extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and p38mapk in macrophages, albeit with differential activation kinetics. Using a selective inhibitor of JNK (SP600125) and JNK1/2 small interfering RNA (siRNA) knocked-down macrophages, it was observed that PGN-induced iNOS and NO expression is significantly inhibited. This suggested that JNK MAPK plays an essential role in PGN-induced iNOS expression and NO production. In contrast, inhibition of the ERK pathway using PD98059 dose dependently enhanced PGN-induced iNOS expression and NO production. PGN-induced ERK activation was attenuated in ERK1/2 siRNA knocked-down macrophages; however, NO and iNOS expression were significantly enhanced. An electrophoretic mobility shift assay showed that SP600125 inhibited PGN-induced NF-κB and AP-1 activation, whereas inhibition of the ERK pathway enhanced NF-κB activation, but with no effect on AP-1. These results indicate that the JNK MAPK positively regulate PGN-induced iNOS and NO expression by activating NF-κB and AP-1 transcription factors, whereas the ERK pathway plays a negative regulatory role via affecting NF-κB activity.