z-logo
open-access-imgOpen Access
1H Nuclear Magnetic Resonance Spectroscopy-Based Studies of the Metabolism of Food-Borne Carcinogen 2-Amino-3-Methylimidazo[4,5-f]Quinoline by Human Intestinal Microbiota
Author(s) -
Christele Humblot,
Bruno Combourieu,
M.-L. Väisänen,
J-Pierre J.-P. Furet,
Anne-Marie Delort,
Sylvie Rabot
Publication year - 2005
Publication title -
hal (le centre pour la communication scientifique directe)
Language(s) - English
DOI - 10.1128/aem.71.9.5116-5123
Subject(s) - quinoline , carcinogen , nuclear magnetic resonance spectroscopy , spectroscopy , chemistry , metabolism , biochemistry , nuclear magnetic resonance , environmental chemistry , organic chemistry , physics , quantum mechanics
2-Amino-3-methylimidazo[4,5-f]quinoline (IQ) is a mutagenic/carcinogenic compound formed from meat and fish during cooking. Following ingestion, IQ is metabolized mainly by liver xenobiotic-metabolizing enzymes, but intestinal bacteria may also contribute to its biotransformation. The aim of this study was to investigate the metabolism of IQ by the human intestinal microbiota. Following incubation of IQ (200 µM) under anoxic conditions with 100-fold dilutions of stools freshly collected from three healthy volunteers, we quantified residual IQ by high-pressure liquid chromatography (HPLC) analysis and characterized the production of IQ metabolites by in situ 1H nuclear magnetic resonance (1H-NMR) spectroscopic analysis of crude incubation media. In addition, we looked for IQ-degrading bacteria by screening collection strains and by isolating new strains from the cecal contents of human-microbiota-associated rats gavaged with IQ on a regular basis. HPLC and 1H-NMR analyses showed that the three human microbiota degraded IQ with different efficiencies (range, 50 to 91% after 72 h of incubation) and converted it into a unique derivative, namely, 7-hydroxy-IQ. We found 10 bacterial strains that were able to perform this reaction: Bacteroides thetaiotaomicron (n = 2), Clostridium clostridiiforme (n = 3), Clostridium perfringens (n = 1), and Escherichia coli (n = 4). On the whole, our results indicate that bacteria belonging to the predominant communities of the human intestine are able to produce 7-hydroxy-IQ from IQ. They also suggest interindividual differences in the ability to perform this reaction. Whether it is a metabolic activation is still a matter of debate, since 7-hydroxy-IQ has been shown to be a direct-acting mutagen in the Ames assay but not carcinogenic in laboratory rodent

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here