z-logo
open-access-imgOpen Access
Waterborne Pathogen Detection by Use of Oligonucleotide-Based Microarrays
Author(s) -
Christine Maynard,
Frédéric Berthiaume,
Karine Lemarchand,
Josée Harel,
Pierre Payment,
Paul Bayardelle,
Luke Masson,
Roland Brousseau
Publication year - 2005
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.71.12.8548-8557.2005
Subject(s) - dna microarray , oligonucleotide , computational biology , pathogen , biology , microarray , genetics , dna , gene , gene expression
A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (10(4) S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here