
Metabolism of Carbaryl via 1,2-Dihydroxynaphthalene by Soil Isolates Pseudomonas sp. Strains C4, C5, and C6
Author(s) -
Vandana P. Swetha,
Prashant S. Phale
Publication year - 2005
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.71.10.5951-5956.2005
Subject(s) - carbaryl , 1 naphthol , biochemistry , chemistry , enzyme , nad+ kinase , pseudomonas , biology , bacteria , genetics , organic chemistry , pesticide , agronomy
Pseudomonas sp. strains C4, C5, and C6 utilize carbaryl as the sole source of carbon and energy. Identification of 1-naphthol, salicylate, and gentisate in the spent media; whole-cell O2 uptake on 1-naphthol, 1,2-dihydroxynaphthalene, salicylaldehyde, salicylate, and gentisate; and detection of key enzymes, viz, carbaryl hydrolase, 1-naphthol hydroxylase, 1,2-dihydroxynaphthalene dioxygenase, and gentisate dioxygenase, in the cell extract suggest that carbaryl is metabolized via 1-naphthol, 1,2-dihydroxynaphthalene, and gentisate. Here, we demonstrate 1-naphthol hydroxylase and 1,2-dihydroxynaphthalene dioxygenase activities in the cell extracts of carbaryl-grown cells. 1-Naphthol hydroxylase is present in the membrane-free cytosolic fraction, requires NAD(P)H and flavin adenine dinucleotide, and has optimum activity in the pH range 7.5 to 8.0. Carbaryl-degrading enzymes are inducible, and maximum induction was observed with carbaryl. Based on these results, the proposed metabolic pathway is carbaryl --> 1-naphthol --> 1,2-dihydroxynaphthalene --> salicylaldehyde --> salicylate --> gentisate --> maleylpyruvate.