z-logo
open-access-imgOpen Access
Alteration of Chain Length Substrate Specificity of Aeromonas caviae R -Enantiomer-Specific Enoyl-Coenzyme A Hydratase through Site-Directed Mutagenesis
Author(s) -
Takeharu Tsuge,
Haruo Takaya,
Seiichi Taguchi,
Yoshiharu Doi
Publication year - 2003
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.69.8.4830-4836.2003
Subject(s) - aeromonas caviae , biochemistry , mutagenesis , enzyme , site directed mutagenesis , mutant , biology , coenzyme a , escherichia coli , chemistry , stereochemistry , gene , reductase , vibrionaceae
Aeromonas caviae R-specific enoyl-coenzyme A (enoyl-CoA) hydratase (PhaJ(Ac)) is capable of providing (R)-3-hydroxyacyl-CoA with a chain length of four to six carbon atoms from the fatty acid beta-oxidation pathway for polyhydroxyalkanoate (PHA) synthesis. In this study, amino acid substitutions were introduced into PhaJ(Ac) by site-directed mutagenesis to investigate the feasibility of altering the specificity for the acyl chain length of the substrate. A crystallographic structure analysis of PhaJ(Ac) revealed that Ser-62, Leu-65, and Val-130 define the width and depth of the acyl-chain-binding pocket. Accordingly, we targeted these three residues for amino acid substitution. Nine single-mutation enzymes and two double-mutation enzymes were generated, and their hydratase activities were assayed in vitro by using trans-2-octenoyl-CoA (C(8)) as a substrate. Three of these mutant enzymes, L65A, L65G, and V130G, exhibited significantly high activities toward octenoyl-CoA than the wild-type enzyme exhibited. PHA formation from dodecanoate (C(12)) was examined by using the mutated PhaJ(Ac) as a monomer supplier in recombinant Escherichia coli LS5218 harboring a PHA synthase gene from Pseudomonas sp. strain 61-3 (phaC1(Ps)). When L65A, L65G, or V130G was used individually, increased molar fractions of 3-hydroxyoctanoate (C(8)) and 3-hydroxydecanoate (C(10)) units were incorporated into PHA. These results revealed that Leu-65 and Val-130 affect the acyl chain length substrate specificity. Furthermore, comparative kinetic analyses of the wild-type enzyme and the L65A and V130G mutants were performed, and the mechanisms underlying changes in substrate specificity are discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here