
Growth Characteristics and Intraspecies Host Specificity of a Large Virus Infecting the Dinoflagellate Heterocapsa circularisquama
Author(s) -
Keisuke Nagasaki,
Yuji Tomaru,
Kenji Tarutani,
Noriaki Katanozaka,
Satoshi Yamanaka,
Hiroshi Tanabe,
Mineo Yamaguchi
Publication year - 2003
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.69.5.2580-2586.2003
Subject(s) - biology , virus , host (biology) , dinoflagellate , virology , microbiology and biotechnology , capsid , heterosigma akashiwo , ecology , algal bloom , phytoplankton , nutrient
The growth characteristics and intraspecies host specificity of Heterocapsa circularisquama virus (HcV), a large icosahedral virus specifically infecting the bivalve-killing dinoflagellate H. circularisquama, were examined. Exponentially growing host cells were more sensitive to HcV than those in the stationary phase, and host cells were more susceptible to HcV infection in the culture when a higher percent of the culture was replaced with fresh medium each day, suggesting an intimate relationship between virus sensitivity and the physiological condition of the host cells. HcV was infective over a wide range of temperatures, 15 to 30 degrees C, and the latent period and burst size were estimated at 40 to 56 h and 1,800 to 2,440 infective particles, respectively. Transmission electron microscopy revealed that capsid formation began within 16 h postinfection, and mature virus particles appeared within 24 h postinfection at 20 degrees C. Compared to Heterosigma akashiwo virus, HcV was more widely infectious to H. circularisquama strains that had been independently isolated in the western part of Japan, and only 5.3% of the host-virus combinations (53 host and 10 viral strains) showed resistance to viral infection. The present results are helpful in understanding the ecology of algal host-virus systems in nature.