z-logo
open-access-imgOpen Access
Interaction of the ΦHSIC Virus with Its Host: Lysogeny or Pseudolysogeny?
Author(s) -
Shan J. Williamson,
M. R. McLaughlin,
John H. Paul
Publication year - 2001
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.67.4.1682-1688.2001
Subject(s) - lysogenic cycle , prophage , lysogen , biology , temperateness , microbiology and biotechnology , bacteriophage , host (biology) , virology , phagemid , lytic cycle , gene , virus , genetics , escherichia coli
The marine phage PhiHSIC has been previously reported to enter into a lysogenic relationship with its host, HSIC, identified as Listonella pelagia. This phage produces a variety of plaques on its host, including turbid and haloed plaques, from which lysogens were previously isolated. These lysogens were unstable during long-term storage at -80( degrees ) C and were lost. When HSIC was reinfected with phage PhiHSIC, pseudolysogen-like interactions between the phage and its host were observed. The cells (termed HSIC-2 or HSIC-2e) produced high viral titers (10(11) ml(-1)) in the absence of inoculating phage and yet reached culture densities of nearly 10(9) ml(-1). Prophages were not induced by mitomycin C or the polyaromatic hydrocarbon naphthalene in cells harboring such infections. However, such cells were homoimmune to superinfection. Colonies hybridized strongly with a gene probe from a 100-bp fragment of the PhiHSIC genome, while the host did not. Analysis of chromosomal DNA preparations suggested the presence of a chromosomally integrated prophage. Phage adsorption experiments suggested that HSIC-2 was adsorption impaired. Because of the chromosomal prophage integration and homoimmunity, we interpret these results to indicate that PhiHSIC establishes a lysogenic relationship with its host that involves an extremely high level of spontaneous induction. This could be caused by a weak repressor of phage production. Additionally, poor phage adsorption of HSIC-2 compared to the wild type probably helped maintain this pseudolysogen-like relationship. In many ways, pseudolysogenic phage-host interactions may provide a paradigm for phage-host interactions in the marine environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here