z-logo
open-access-imgOpen Access
Cellular Identification of a Novel Uncultured Marine Stramenopile (MAST-12 Clade) Small-Subunit rRNA Gene Sequence from a Norwegian Estuary by Use of Fluorescence In Situ Hybridization-Scanning Electron Microscopy
Author(s) -
Karolina Kołodziej,
Thorsten Stoeck
Publication year - 2007
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.02158-06
Subject(s) - biology , flagellum , blastocystis , 18s ribosomal rna , ribosomal dna , clade , fluorescence in situ hybridization , ribosomal rna , evolutionary biology , zoology , gene , microbiology and biotechnology , phylogenetics , genetics , chromosome , feces
Revealing the cellular identity of organisms behind environmental eukaryote rRNA gene sequences is a major objective in microbial diversity research. We sampled an estuarine oxygen-depleted microbial mat in southwestern Norway and retrieved an 18S rRNA gene signature that branches in the MAST-12 clade, an environmental marine stramenopile clade. Detailed phylogenetic analyses revealed that MAST-12 branches among the heterotrophic stramenopiles as a sister of the free-living Bicosoecida and the parasitic genusBlastocystis . Specific sequence signatures confirmed a relationship to these two groups while excluding direct assignment. We designed a specific oligonucleotide probe for the target sequence and detected the corresponding organism in incubation samples using fluorescence in situ hybridization (FISH). Using the combined FISH-scanning electron microscopy approach (T. Stoeck, W. H. Fowle, and S. S. Epstein, Appl. Environ. Microbiol.69: 6856-6863, 2003), we determined the morphotype of the target organism among the very diverse possible morphologies of the heterotrophic stramenopiles. The unpigmented cell is spherical and about 5 μm in diameter and possesses a short flagellum and a long flagellum, both emanating anteriorly. The long flagellum bears mastigonemes in a characteristic arrangement, and its length (30 μm) distinguishes the target organism from other recognized heterotrophic stramenopiles. The short flagellum is naked and often directed posteriorly. The organism possesses neither a lorica nor a stalk. The morphological characteristics that we discovered should help isolate a representative of a novel stramenopile group, possibly at a high taxonomic level, in order to study its ultrastructure, physiological capabilities, and ecological role in the environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here