z-logo
open-access-imgOpen Access
Effect of P Availability on Temporal Dynamics of Carbon Allocation and Glomus intraradices High-Affinity P Transporter Gene Induction in Arbuscular Mycorrhiza
Author(s) -
Pål Axel Olsson,
Maria Hansson,
Stephen Burleigh
Publication year - 2006
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.02154-05
Subject(s) - symbiosis , biology , fungus , mycorrhiza , hypha , glomeromycota , transporter , daucus carota , mycelium , glomus , botany , auxin , biochemistry , gene , bacteria , spore , genetics
Arbuscular mycorrhizal (AM) fungi depend on a C supply from the plant host and simultaneously provide phosphorus to the colonized plant. We therefore evaluated the influence of external P on C allocation in monoxenic Daucus carota-Glomus intraradices cultures in an AM symbiosis. Fungal hyphae proliferated from a solid minimal medium containing colonized roots into a C-free liquid minimal medium with high or low P availability. Roots and hyphae were harvested periodically, and the flow of C from roots to fungus was measured by isotope labeling. We also measured induction of a G. intraradices high-affinity P transporter to estimate fungal P demand. The prevailing hypothesis is that high P availability reduces mycorrhizal fungal growth, but we found that C flow to the fungus was initially highest at the high P level. Only at later harvests, after 100 days of in vitro culture, were C flow and fungal growth limited at high P availability. Thus, AM fungi can benefit initially from P-enriched environments in terms of plant C allocation. As expected, the P transporter induction was significantly greater at low P availability and greatest in very young mycelia. We found no direct link between C flow to the fungus and the P transporter transcription level, which indicates that a good C supply is not essential for induction of the high-affinity P transporter. We describe a mechanism by which P regulates symbiotic C allocation, and we discuss how this mechanism may have evolved in a competitive environment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here