
Gene Expression Profiling of Listeria monocytogenes Strain F2365 during Growth in Ultrahigh-Temperature-Processed Skim Milk
Author(s) -
Yanhong Liu,
Amy Ream
Publication year - 2008
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.00356-08
Subject(s) - skimmed milk , listeria monocytogenes , gene , biology , gene expression profiling , gene expression , microarray analysis techniques , dna microarray , raw milk , microbiology and biotechnology , biochemistry , food science , bacteria , genetics
To study howListeria monocytogenes survives and grows in ultrahigh-temperature-processed (UHT) skim milk, microarray technology was used to monitor the gene expression profiles of strain F2365 in UHT skim milk. Total RNA was isolated from strain F2365 in UHT skim milk after 24 h of growth at 4°C, labeled with fluorescent dyes, and hybridized to “custom-made” commercial oligonucleotide (35-mers) microarray chips containing the whole genome ofL. monocytogenes strain F2365. Compared toL. monocytogenes grown in brain heart infusion (BHI) broth for 24 h at 4°C, 26 genes were upregulated (more-than-twofold increase) in UHT skim milk, whereas 14 genes were downregulated (less-than-twofold decrease). The upregulated genes included genes encoding transport and binding proteins, transcriptional regulators, proteins in amino acid biosynthesis and energy metabolism, protein synthesis, cell division, and hypothetical proteins. The downregulated genes included genes that encode transport and binding proteins, protein synthesis, cellular processes, cell envelope, energy metabolism, a transcriptional regulator, and an unknown protein. The gene expression changes determined by microarray assays were confirmed by real-time reverse transcriptase PCR analyses. Furthermore, cells grown in UHT skim milk displayed the same sensitivity to hydrogen peroxide as cells grown in BHI, demonstrating that the elevated levels of expression of genes encoding manganese transporter complexes in UHT skim milk did not result in changes in the oxidative stress sensitivity. To our knowledge, this report represents a novel study of global transcriptional gene expression profiling ofL. monocytogenes in a liquid food.