
Aeration Controls the Reduction and Methylation of Tellurium by the Aerobic, Tellurite-Resistant Marine Yeast Rhodotorula mucilaginosa
Author(s) -
Patrick Ollivier,
Andrew S. Bahrou,
Thomas M. Church,
Thomas E. Hanson
Publication year - 2011
Publication title -
applied and environmental microbiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.552
H-Index - 324
eISSN - 1070-6291
pISSN - 0099-2240
DOI - 10.1128/aem.00351-11
Subject(s) - aeration , chemistry , volatilisation , oxyanion , yeast , bioremediation , precipitation , environmental chemistry , organic chemistry , catalysis , biochemistry , bacteria , biology , physics , meteorology , genetics
We previously described a marine, tellurite-resistant strain of the yeastRhodotorula mucilaginosa that both precipitates intracellular Te(0) and volatilizes methylated Te compounds when grown in the presence of the oxyanion tellurite. The uses of microbes as a “green” route for the production of Te(0)-containing nanostructures and for the remediation of Te-oxyanion wastes have great potential, and so a more thorough understanding of this process is required. Here, Te precipitation and volatilization catalyzed byR. mucilaginosa were examined in continuously aerated and sealed (low oxygen concentration) batch cultures. Continuous aeration was found to strongly promote Te volatilization while inhibiting Te(0) precipitation. This differs from the results in sealed batch cultures, for which tellurite reduction to Te(0) was found to be very efficient. We show also that volatile Te species may be degraded rapidly in medium and converted to the particulate form by biological activity. Further experiments revealed that Te(0) precipitates produced byR. mucilaginosa can be further transformed to volatile and dissolved Te species. However, it was not clearly determined whether Te(0) is a required intermediate for Te volatilization. Based on these results, we conclude that low oxygen concentrations will be the most efficient for production of Te(0) nanoparticles while limiting the production of toxic volatile Te species, although the production of these compounds may never be completely eliminated.