z-logo
open-access-imgOpen Access
Antimalarial 9-Anilinoacridine Compounds Directed atHematin
Author(s) -
Saranya Auparakkita,
Wilai Noonpakdee,
R.K. Ralph,
William A. Denny,
Prapon Wilairat
Publication year - 2003
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.47.12.3708-3712.2003
Subject(s) - amsacrine , acridine , lysis , dna , chemistry , topoisomerase , red blood cell , plasmodium falciparum , heme , stereochemistry , in vitro , biochemistry , biology , enzyme , immunology , organic chemistry , malaria
Antimalarial 9-anilinoacridines are potent inhibitors of parasite DNA topoisomerase II both in vitro and in situ. 3,6-diamino substitution on the acridine ring greatly improves parasiticidal activity against Plasmodium falciparum by targeting DNA topoisomerase II. A series of 9-anilinoacridines were investigated for their abilities to inhibit beta-hematin formation, to form drug-hematin complexes, and to enhance hematin-induced lysis of red blood cells. Inhibition of beta-hematin formation was minimal with 3,6-diamino analogs of 9-anilinoacridine and greatest with analogs with a 3,6-diCl substitution together with an electron-donating group in the 1'-anilino position. On the other hand, the presence of a 1'-N(CH3)2 group in the anilino ring produced compounds that strongly inhibited beta-hematin formation but which did not appear to be sensitive to the nature of the substitutions in the acridine nucleus. The derivatives bound hematin, and Job's plots of UV-visible absorbance changes in drug-hematin complexes at various molar ratios indicated a stoichiometric ratio of 1:2. The drugs enhanced hematin-induced red blood cell lysis at low concentrations (<4 microM). These studies open up the novel possibility of development of 9-anilinoacridine antimalarials that target not only DNA topoisomerase II but also beta-hematin formation, which should help delay the rapid onset of resistance to drugs acting at only a single site.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom