
Genetic and Functional Analysis of the Chromosome-Encoded Carbapenem-Hydrolyzing Oxacillinase OXA-40 ofAcinetobacter baumannii
Author(s) -
Claire Héritier,
Laurent Poirel,
Daniel Aubert,
Patrice Nordmann
Publication year - 2003
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.47.1.268-273.2003
Subject(s) - imipenem , acinetobacter baumannii , carbapenem , mutant , escherichia coli , chemistry , biology , biochemistry , microbiology and biotechnology , gene , bacteria , antibiotics , genetics , antibiotic resistance , pseudomonas aeruginosa
Clinical isolate Acinetobacter baumannii CLA-1 was resistant to a series of antibiotic molecules, including carbapenems. Cloning and expression of the beta-lactamase gene content of this isolate in Escherichia coli DH10B identified a chromosome-encoded oxacillinase, OXA-40, that differed by one or two amino acid changes from OXA-24, -25, and -26 and an AmpC-type cephalosporinase. The OXA-40 beta-lactamase had a mainly narrow-spectrum hydrolytic profile, but it included ceftazidime and imipenem. Its activity was resistant to inhibition by clavulanic acid, tazobactam, sulbactam, and, like most of the other carbapenem-hydrolyzing oxacillinases, NaCl. OXA-40 had an FGN triad replacing a YGN motif at class D beta-lactamase (DBL) positions 144 to 146. Site-directed DNA mutagenesis leading to a Phe-to-Tyr change at DBL position 144 in OXA-40 gave a mutant enzyme with increased hydrolytic activity against most beta-lactams, including imipenem. Conversely, with a gene encoding the narrow-spectrum oxacillinase OXA-1 as the template, a nucleotide substitution leading to a Tyr-to-Phe change in the YGN motif of OXA-1 gave a mutant enzyme with decreased hydrolytic activity without an increase in carbapenem-hydrolyzing activity. Thus, the Phe residue in the FGN motif was not associated with carbapenem-hydrolyzing activity by itself but instead was associated with weak overall hydrolytic activity. Finally, this Phe residue in OXA-40 explained resistance to inhibition by NaCl whereas a Tyr residue in motif YGN was related to susceptibility to NaCl.