
Effects of Miltefosine and Other Alkylphosphocholines on Human Intestinal Parasite Entamoeba histolytica
Author(s) -
Karlheinz Seifert,
Michael Duchêne,
Walther H. Wernsdorfer,
Herwig Kollaritsch,
Otto Scheiner,
G Wiedermann,
Thomas Hottkowitz,
Hansjörg Eibl
Publication year - 2001
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.45.5.1505-1510.2001
Subject(s) - entamoeba histolytica , miltefosine , parasite hosting , microbiology and biotechnology , biology , dysentery , immunology , leishmaniasis , world wide web , visceral leishmaniasis , computer science
The protozoan parasite Entamoeba histolytica is the cause of amoebic dysentery and liver abscess. It is therefore responsible for significant morbidity and mortality in a number of countries. Infections with E. histolytica are treated with nitroimidazoles, primarily with metronidazole. At this time, there is a lack of useful alternative classes of substances for the treatment of invasive amoebiasis. Alkylphosphocholines (alkyl-PCs) such as hexadecyl-PC (miltefosine) were originally developed as antitumor agents, but recently they have been successfully used for the treatment of visceral leishmaniasis in humans. We examined hexadecyl-PC and several other alkyl-PCs with longer alkyl chains, with and without double bond(s), for their activity against two strains of E. histolytica. The compounds with the highest activity were oleyl-PC, octadecyl-PC, and nonadecenyl-PC, with 50% effective concentrations for 48 h of treatment between 15 and 21 microM for strain SFL-3 and between 73 and 98 microM for strain HM-1:IMSS. We also tested liposomal formulations of these alkyl-PCs and miltefosine. The alkyl-PC liposomes showed slightly lower activity, but are expected to be well tolerated. Liposomal formulations of oleyl-PC or closely related alkyl-PCs could be promising candidates for testing as broad-spectrum antiprotozoal and antitumor agents in humans.