Clinical Pharmacokinetics of 1-[(( S )-2-Hydroxy-2-Oxo-1,4,2-Dioxaphosphorinan-5-yl)methyl]cytosine in Human Immunodeficiency Virus-Infected Patients
Author(s) -
Kenneth C. Cundy,
Patricia BarditchCrovo,
Brent G. Petty,
April Ruby,
Murphy Redpath,
Howard S. Jaffe,
Paul S. Lietman
Publication year - 1999
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.43.2.271
Subject(s) - pharmacokinetics , cidofovir , bioavailability , urine , volume of distribution , dosing , pharmacology , medicine , virus , virology
The pharmacokinetics and bioavailability of 1-[((S )-2-hydroxy-2-oxo-1,4,2-dioxaphosphorinan-5-yl)methyl]cytosine (cyclic HPMPC) were examined at four doses in 22 patients with human immunodeficiency virus infection. Two groups of six patients received a single dose of cyclic HPMPC at 1.5 or 3.0 mg/kg of body weight by each of the oral and intravenous routes in a random order with a 2-week washout period between administrations. Additional patients received single intravenous doses of cyclic HPMPC at 5.0 mg/kg (n = 6) or 7.5 mg/kg (n = 4). Serial serum and urine samples were collected at intervals over 24 h after dosing. The concentrations of cyclic HPMPC and cidofovir in serum and urine samples were determined by validated reverse-phase ion-pairing high-performance liquid chromatography methods with derivatization and fluorescence detection. After intravenous administration of cyclic HPMPC, concentrations of cyclic HPMPC declined in a biexponential manner, with a mean ± standard deviation half-life of 1.09 ± 0.12 h (n = 22). The pharmacokinetics of cyclic HPMPC were independent of dose over the dose range of 1.5 to 7.5 mg/kg. The total clearance of cyclic HPMPC from serum and the volume of distribution of intravenous cyclic HPMPC were 198 ± 39.6 ml/h/kg and 338 ± 65.1 ml/kg, respectively (n = 22). The renal clearance of cyclic HPMPC (132 ± 27.3 ml/h/kg;n = 22) exceeded the creatinine clearance (86.2 ± 16.3 ml/h/kg), indicating active tubular secretion. The cyclic HPMPC excreted in urine in 24 h accounted for 71.3% ± 16.0% of the administered dose. Cidofovir was formed from cyclic HPMPC in vivo with a time to the maximum concentration in serum of 1.64 ± 0.23 h (n = 22). Cidofovir levels declined in an apparent monoexponential manner, with a mean terminal half-life of 3.98 ± 1.26 h (n = 22). The cidofovir excreted in urine in 24 h accounted for 9.40% ± 2.33% of the administered cyclic HPMPC dose. Exposure to cidofovir after intravenous administration of cyclic HPMPC was dose proportional and was 14.9% of that from an equivalent dose of cidofovir. The present study suggests that intravenous cyclic HPMPC also has a lower potential for nephrotoxicity in humans compared to that of intravenous cidofovir. The oral bioavailabilities of cyclic HPMPC were 1.76% ± 1.48% and 3.10% ± 1.16% with the administration of doses of 1.5 and 3.0 mg/kg, respectively (n = 6 per dose). The maximum concentrations of cyclic HPMPC in serum were 0.036 ± 0.021 and 0.082 ± 0.038 μg/ml after the oral administration of doses of 1.5 and 3.0 mg/kg, respectively. Cidofovir reached quantifiable levels in the serum of only one patient for each of the 1.5- and 3.0-mg/kg oral cyclic HPMPC doses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom