z-logo
open-access-imgOpen Access
A point mutation in the human cytomegalovirus DNA polymerase gene confers resistance to ganciclovir and phosphonylmethoxyalkyl derivatives
Author(s) -
Veronica Sullivan,
Karen K. Biron,
Christine L. Talarico,
Sylvia C. Stanat,
M. R. Davis,
Lu-Ann M. Pozzi,
Donald M. Coen
Publication year - 1993
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.37.1.19
Subject(s) - ganciclovir , dna polymerase , human cytomegalovirus , biology , polymerase , cytosine , microbiology and biotechnology , point mutation , mutant , primer (cosmetics) , recombinant dna , gene , virology , mutation , dna , genetics , chemistry , organic chemistry
Ganciclovir-resistant mutant 759rD100 derived from human cytomegalovirus strain AD169 contains two resistance mutations, one of which is in the UL97 gene and results in decreased ganciclovir phosphorylation in infected cells [V. Sullivan, C. L. Talarico, S. C. Stanat, M. Davis, D. M. Coen, and K. K. Biron, Nature (London) 358:162-164, 1992]. In the present study, we mapped the second mutation to a 4.1-kb DNA fragment containing the DNA polymerase gene and showed that it confers ganciclovir resistance without impairing phosphorylation. Sequence analysis of the 4.1-kb region revealed a single nucleotide change that resulted in a glycine-to-alanine substitution at position 987 within conserved region V of the DNA polymerase. Recombinant viruses constructed to contain the DNA polymerase mutation but not the phosphorylation defect displayed intermediate resistance (4- to 6-fold) to ganciclovir relative to the original mutant 759rD100 (22-fold); the recombinant viruses also displayed resistance to ganciclovir cyclic phosphate (7-fold), 1-(dihydroxy-2-propoxymethyl)-cytosine (12-fold), and the phosphonylmethoxyalkyl derivatives (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)adenine and (S)-1-(3-hydroxy-2-phosphonylmethoxypropyl)cytosine (8- to 10-fold). However, the recombinant viruses remained susceptible to certain related compounds. These results imply that the human cytomegalovirus DNA polymerase is a selective target for the antiviral activities of ganciclovir, certain of its derivatives and phosphonomethoxyalkyl derivatives; support a role for region V in substrate recognition; and suggest the possibility of clinical resistance of human cytomegalovirus to these compounds because of polymerase mutations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here