
Molecular epidemiology of trimethoprim resistance among coagulase-negative staphylococci
Author(s) -
D W Galetto,
J L Johnston,
Gordon L. Archer
Publication year - 1987
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.31.11.1683
Subject(s) - plasmid , biology , trimethoprim , restriction enzyme , microbiology and biotechnology , genetics , restriction map , hybridization probe , gene , southern blot , staphylococcus haemolyticus , staphylococcus , staphylococcus aureus , bacteria , antibiotics
A 42% (70 of 167 isolates) incidence of resistance to 20 micrograms of trimethoprim per ml was found among clinical isolates of coagulase-negative staphylococci from two hospitals. A specific trimethoprim resistance gene probe from a conjugative Staphylococcus aereus plasmid was used to investigate the location of the trimethoprim resistance gene among 29 isolates. In 14 trimethoprim-resistant isolates, the probe hybridized with only chromosomal DNA, in 9 it hybridized with only plasmid DNA, and in 1 isolate both plasmid and chromosomal sequences showed hybridization. In five isolates there was no hybridization of the probe with either chromosomal or plasmid DNA. Four of these five nonhybridizing isolates were Staphylococcus haemolyticus. In contrast, all 22 Staphylococcus epidermidis isolates tested hybridized with the probe. The presence of the trimethoprim resistance gene in a chromosomal location was correlated with a lower MIC (median, 80 micrograms/ml) than when it was plasmid encoded (median, 1,250 micrograms/ml). Restriction endonuclease mapping as well as DNA hybridization of cloned plasmid and chromosomal DNA showed that there were 2.7 kilobases of common DNA in the two loci. This included the 500 base pairs of DNA mediating trimethoprim resistance and a total of 2.2 kilobases of 3'- and 5'-flanking sequences. The presence of the same gene and flanking sequences in chromosomal and plasmid locations suggests that the trimethoprim resistance determinant is translocated among different genetic loci.