z-logo
open-access-imgOpen Access
Novobiocin antagonism of amastigotes of Trypanosoma cruzi growing in cell-free medium
Author(s) -
P G Pate,
John S. Wolfson,
Gail McHugh,
Steve C. Pan,
Morton N. Swartz
Publication year - 1986
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.29.3.426
Subject(s) - novobiocin , amastigote , biology , dna gyrase , trypanosoma cruzi , kinetoplast , microbiology and biotechnology , antibacterial agent , biochemistry , leishmania , dna , escherichia coli , antibiotics , parasite hosting , world wide web , computer science , gene
Inhibitors of the enzyme bacterial topoisomerase II (DNA gyrase) were evaluated for activity against Trypanosoma cruzi (Brazil strain), based on the theoretical need for a topoisomerase II in the replication of the kinetoplast DNA network. Novobiocin (500 micrograms/ml) antagonized amastigotes of T. cruzi growing in a cell-free medium at 37 degrees C, as manifested by inhibition of multiplication, abnormal morphology of Giemsa-stained organisms, and delayed or absent growth of cells upon subculturing in a drug-free medium. In contrast, novobiocin (1,000 micrograms/ml) essentially had no effect on the multiplication and motility of epimastigotes growing in a cell-free medium at 27 degrees C. This resistance of epimastigotes represented a difference in the physiology of this morphologic stage and not in the temperature of experimentation, because novobiocin inhibited multiplication of amastigotes at 27 degrees C as well and accelerated transformation to epimastigotes. With T. cruzi growing within cultured human fibroblasts, novobiocin (200 micrograms/ml) markedly inhibited transformation of intracellular amastigotes to trypomastigotes. Clorobiocin, a structural analog of novobiocin and likewise an inhibitor of the B subunit of bacterial topoisomerase II, was five times more potent on a molar basis than novobiocin was in antagonism of amastigotes growing in a cell-free medium and did not antagonize epimastigotes. Coumermycin A1, another analog of novobiocin, and five 4-quinolone antibacterial agents, antagonists of the A subunit of bacterial topoisomerase II, inhibited neither amastigotes nor epimastigotes. These experiments indicate that novobiocin and clorobiocin represent a new structural class of drugs with activity against T. cruzi. Whether the mechanism of action of these drugs involves antagonism of a T. cruzi topoisomerase II or an unrelated target is yet to be determined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here