z-logo
open-access-imgOpen Access
Delamanid Kills Dormant Mycobacteria In Vitro and in a Guinea Pig Model of Tuberculosis
Author(s) -
Xiuhao Chen,
Hiroyuki Hashizume,
Tatsuo Tomishige,
Izuru Nakamura,
Miki Matsuba,
Mamoru Fujiwara,
Ryuki Kitamoto,
Erina Hanaki,
Yoshio Ohba,
Makoto Matsumoto
Publication year - 2017
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.02402-16
Subject(s) - pyrazinamide , medicine , tuberculosis , microbiology and biotechnology , ethionamide , bacilli , mycobacterium tuberculosis , isoniazid , mycobacterium bovis , pharmacology , ethambutol , biology , bacteria , pathology , genetics
Tuberculosis (TB) treatment is long and requires multiple drugs, likely due to various phenotypes of TB bacilli with variable drug susceptibilities. Drugs with broad activity are urgently needed. This study aimed to evaluate delamanid's activity against growing or dormant bacilliin vitro as well asin vivo . Cultures ofMycobacterium bovis BCG Tokyo under aerobic and anaerobic conditions were used to study the activity of delamanid against growing and dormant bacilli, respectively. Delamanid exhibited significant bactericidal activity against replicating and dormant bacilli at or above concentrations of 0.016 and 0.4 mg/liter, respectively. To evaluate delamanid's antituberculosis activityin vivo , we used a guinea pig model of chronic TB infection in which the lung lesions were similar to those in human TB disease. In the guinea pig TB model, a daily dose of 100 mg delamanid/kg of body weight for 4 or 8 weeks demonstrated strong bactericidal activity againstMycobacterium tuberculosis . Importantly, histological examination revealed that delamanid killed TB bacilli within hypoxic lesions of the lung. The combination regimens containing delamanid with rifampin and pyrazinamide or delamanid with levofloxacin, ethionamide, pyrazinamide, and amikacin were more effective than the standard regimen (rifampin, isoniazid, and pyrazinamide). Our data show that delamanid is effective in killing both growing and dormant bacilliin vitro and in the guinea pig TB model. Adding delamanid to current TB regimens may improve treatment outcomes, as demonstrated in recent clinical trials with pulmonary multidrug-resistant (MDR) TB patients. Delamanid may be an important drug for consideration in the construction of new regimens to shorten TB treatment duration.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom