Pharmacokinetics of Ertapenem in Critically Ill Patients Receiving Continuous Venovenous Hemodialysis or Hemodiafiltration
Author(s) -
Rachel F. Eyler,
A. Mary Vilay,
Ahmed Nader,
Michael Heung,
Melissa Pleva,
Kevin M. Sowinski,
Daryl D. DePestel,
Fritz Sörgel,
Martina Kinzig,
Bruce A. Mueller
Publication year - 2013
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.02090-12
Subject(s) - ertapenem , medicine , pharmacokinetics , hemodialysis , dosing , dialysis , renal replacement therapy , nonmem , population , carbapenem , therapeutic drug monitoring , antibiotics , meropenem , anesthesia , pharmacology , chemistry , biochemistry , environmental health , antibiotic resistance
This study characterizes the pharmacokinetics of ertapenem, a carbapenem antibiotic, in critically ill adult subjects receiving continuous renal replacement therapy (CRRT). Eight critically ill patients with suspected/known Gram-negative infections receiving continuous venovenous hemodialysis (CVVHD) or continuous venovenous hemodiafiltration (CVVHDF) and ertapenem were enrolled. One gram of ertapenem was infused over 30 min. Predialyzer blood samples were drawn with the first dose of ertapenem from the hemodialysis tubing at time zero, 30 min, and 1, 2, 4, 8, 12, 18, and 24 h after the start of the ertapenem infusion. Effluent was collected at the same time points. Ertapenem total serum, unbound serum, and effluent concentrations from all eight subjects were used simultaneously to perform a population compartmental pharmacokinetic modeling procedure using NONMEM. Monte Carlo simulations were performed to evaluate the ability of several ertapenem dosing regimens (500 mg once daily, 750 mg once daily, 500 mg twice daily, and 1,000 mg once daily) to obtain effective unbound serum concentrations above 0.5, 1, and 2 μg/ml. For our simulated patients, all regimens produced unbound ertapenem concentrations above 2 μg/ml for 40% of the dosing interval for at least 96% of simulated patients. (This study has been registered at ClinicalTrials.gov under registration no. NCT00877370.).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom