z-logo
open-access-imgOpen Access
Prevalence and Expression of the Plasmid-Mediated Quinolone Resistance Determinant qnrA1
Author(s) -
Xiaogang Xu,
Wei Shi,
Xinyu Ye,
Liu Yang,
Wanliang Shi,
Yingyuan Zhang,
Minggui Wang
Publication year - 2007
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.00616-07
Subject(s) - plasmid , quinolone , microbiology and biotechnology , biology , resistance (ecology) , genetics , antibiotics , gene , ecology
Since its discovery, qnrA has been found in most common Enterobacteriaceae. Ciprofloxacin MICs conferred by different qnrA-positive plasmids could range from 0.1 microg/ml to 2 microg/ml in Escherichia coli J53. The reasons for different ciprofloxacin MICs conferred by qnrA have not been fully clarified. Five hundred forty-one consecutive gram-negative clinical strains that were resistant or intermediate to ciprofloxacin and that were isolated in Shanghai in 2005 were screened for qnrA by PCR. For qnrA-positive isolates, the transferability of quinolone resistance was determined by conjugation and mutations within the quinolone resistance-determining region (QRDR) of gyrA and parC. aac(6')-Ib-cr was detected and qnrA RNA expression was determined using real-time reverse transcription-PCR for transconjugants with different ciprofloxacin MICs. The qnrA gene was detected in 7 of the 541 clinical isolates. Quinolone resistance was transferred in four strains by conjugation. Mutations in the QRDR of gyrA and parC were detected in five qnrA-positive clinical strains with higher ciprofloxacin MICs. Of four qnrA-bearing plasmids in E. coli J53, pHS4 and pHS5 conferred ciprofloxacin MICs of 0.094 to 0.125 microg/ml; pHS3, which harbored the aac(6')-Ib-cr gene as well, conferred a ciprofloxacin MIC of 0.25 microg/ml, and pHS6, which had both the aac(6')-Ib-cr gene and a high expression level of qnrA, had a ciprofloxacin MIC of 1.0 microg/ml. The prevalence of qnrA appeared to be higher in Enterobacter cloacae than in other Enterobacteriaceae. The coexistence of qnrA and aac(6')-Ib-cr in a single plasmid and increased qnrA expression can account for the different levels of ciprofloxacin resistance seen in transconjugants.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here