Structural basis of transcription-translation coupling and collision in bacteria
Author(s) -
Michael Webster,
Mária Takács,
Chengjin Zhu,
Vita Vidmar,
Ayesha Eduljee,
Mo’men Abdelkareem,
Albert Weixlbaumer
Publication year - 2020
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.abb5036
Subject(s) - transcription (linguistics) , basis (linear algebra) , bacteria , translation (biology) , collision , microbiology and biotechnology , computational biology , chemistry , physics , biology , biophysics , computer science , genetics , gene , mathematics , programming language , linguistics , philosophy , geometry , messenger rna
Prokaryotic messenger RNAs (mRNAs) are translated as they are transcribed. The lead ribosome potentially contacts RNA polymerase (RNAP) and forms a supramolecular complex known as the expressome. The basis of expressome assembly and its consequences for transcription and translation are poorly understood. Here, we present a series of structures representing uncoupled, coupled, and collided expressome states determined by cryo–electron microscopy. A bridge between the ribosome and RNAP can be formed by the transcription factor NusG, which stabilizes an otherwise-variable interaction interface. Shortening of the intervening mRNA causes a substantial rearrangement that aligns the ribosome entrance channel to the RNAP exit channel. In this collided complex, NusG linkage is no longer possible. These structures reveal mechanisms of coordination between transcription and translation and provide a framework for future study.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom