z-logo
open-access-imgOpen Access
Decarboxylative borylation
Author(s) -
Chao Li,
Jie Wang,
Lisa M. Barton,
Shan Yu,
Maoqun Tian,
David S. Peters,
M. N. Satish Kumar,
Antony W. Yu,
Kristen Johnson,
Arnab K. Chatterjee,
Ming Yan,
Phil S. Baran
Publication year - 2017
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.aam7355
Subject(s) - borylation , chemistry , environmental science , organic chemistry , aryl , alkyl
The widespread use of alkyl boronic acids and esters is frequently hampered by the challenges associated with their preparation. We describe a simple and practical method to rapidly access densely functionalized alkyl boronate esters from abundant carboxylic substituents. This broad-scope nickel-catalyzed reaction uses the same activating principle as amide bond formation to replace a carboxylic acid moiety with a boronate ester. Application to peptides allowed expedient preparations of α-amino boronic acids, often with high stereoselectivity, thereby facilitating synthesis of the alkyl boronic acid drugs Velcade and Ninlaro as well as a boronic acid version of the iconic antibiotic vancomycin. The reaction also enabled the discovery and extensive biological characterization of potent human neutrophil elastase inhibitors, which offer reversible covalent binding properties.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom