Effect of the cytoplasmic domain on antigenic characteristics of HIV-1 envelope glycoprotein
Author(s) -
Jia Chen,
James M. Kovacs,
Hanqin Peng,
Sophia RitsVolloch,
Jianming Lü,
Donghyun Park,
Elise Zablowsky,
Michael S. Seaman,
Bing Chen
Publication year - 2015
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.aaa9804
Subject(s) - immunogen , epitope , glycoprotein , virology , antibody , antigen , biology , cytoplasm , microbiology and biotechnology , immunology , genetics , monoclonal antibody
A major goal for HIV-1 vaccine development is the production of an immunogen to mimic native, functional HIV-1 envelope trimeric spikes (Env) on the virion surface. We lack a reliable description of a native, functional trimer, however, because of inherent instability and heterogeneity in most preparations. We describe here two conformationally homogeneous Envs derived from difficult-to-neutralize primary isolates. All their non-neutralizing epitopes are fully concealed and independent of their proteolytic processing. Most broadly neutralizing antibodies (bnAbs) recognize these native trimers. Truncation of their cytoplasmic tail has little effect on membrane fusion, but it diminishes binding to trimer-specific bnAbs while exposing non-neutralizing epitopes. These results yield a more accurate antigenic picture than hitherto possible of a genuinely untriggered and functional HIV-1 Env; they can guide effective vaccine development.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom