z-logo
open-access-imgOpen Access
Systematic humanization of yeast genes reveals conserved functions and genetic modularity
Author(s) -
Aashiq H. Kachroo,
Jon M. Laurent,
Christopher M. Yellman,
Austin G. Meyer,
Claus O. Wilke,
Edward M. Marcotte
Publication year - 2015
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.aaa0769
Subject(s) - gene , modularity (biology) , biology , genetics , yeast , function (biology) , saccharomyces cerevisiae , sequence (biology) , computational biology , genome , conserved sequence , evolutionary biology , base sequence
To determine whether genes retain ancestral functions over a billion years of evolution and to identify principles of deep evolutionary divergence, we replaced 414 essential yeast genes with their human orthologs, assaying for complementation of lethal growth defects upon loss of the yeast genes. Nearly half (47%) of the yeast genes could be successfully humanized. Sequence similarity and expression only partly predicted replaceability. Instead, replaceability depended strongly on gene modules: Genes in the same process tended to be similarly replaceable (e.g., sterol biosynthesis) or not (e.g., DNA replication initiation). Simulations confirmed that selection for specific function can maintain replaceability despite extensive sequence divergence. Critical ancestral functions of many essential genes are thus retained in a pathway-specific manner, resilient to drift in sequences, splicing, and protein interfaces.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom