Iron Isotope Fractionation During Magmatic Differentiation in Kilauea Iki Lava Lake
Author(s) -
FangZhen Teng,
Nicolas Dauphas,
Rosalind T. Helz
Publication year - 2008
Publication title -
science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 12.556
H-Index - 1186
eISSN - 1095-9203
pISSN - 0036-8075
DOI - 10.1126/science.1157166
Subject(s) - phenocryst , geology , lava , geochemistry , olivine , igneous differentiation , basalt , fractionation , isotope , isotope fractionation , volcanic rock , chemistry , volcano , physics , organic chemistry , quantum mechanics
Magmatic differentiation helps produce the chemical and petrographic diversity of terrestrial rocks. The extent to which magmatic differentiation fractionates nonradiogenic isotopes is uncertain for some elements. We report analyses of iron isotopes in basalts from Kilauea Iki lava lake, Hawaii. The iron isotopic compositions (56Fe/54Fe) of late-stagemeltveins are 0.2 permil (per thousand) greater than values for olivine cumulates. Olivine phenocrysts are up to 1.2 per thousand lighter than those of whole rocks. These results demonstrate that iron isotopes fractionate during magmatic differentiation at both whole-rock and crystal scales. This characteristic of iron relative to the characteristics of magnesium and lithium, for which no fractionation has been found, may be related to its complex redox chemistry in magmatic systems and makes iron a potential tool for studying planetary differentiation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom